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Anelastic and dielectric measurements of fused-silica and soda-silica glasses have been made at low temper-
atures. The results indicate the presence of distinct relaxation processes at ~11 and ~35°K. It is suggested
that these relaxations are due to vibrational modes in excess of the usual Debye spectrum. The existence of
these additional modes, or “Einstein modes,”” has already been deduced from low-temperature specific-heat
measurements. A simple theoretical treatment of a charged harmonic oscillator coupled to the strain through
a Griineisen constant shows that anelastic and dielectric relaxations are expected from an excess mode of this
kind. Very general considerations of the interactions between the “Einstein oscillator” and the bulk phonons
suggest that the relaxation time = describing the approach to equilibrium of the perturbed oscillator is of
the form 7 = 74¢@/*7. This expression is found to be in good agreement with the experimental observations. For
the 11°K relaxation Q=0.0140+0.0008 eV, while for the 35°K relaxation 0=0.053 3-0.007¢V.

INTRODUCTION

PECIFIC-HEAT measurements have established
the fact that many amorphous substances exhibit
substantial positive deviations from ideal Debye be-
havior at low temperatures. In some cases, it has been
shown, using Raman data, that low-frequency lattice
vibrational modes exist as well. The work of Flubacher,
Leadbetter, Morrison, and Stoicheff,! incorporating
both types of measurement, shows that the excess low-
temperature specific heat of vitreous silica can be ex-
plained in terms of excess low-frequency vibrational
modes not present in crystalline quartz. In essence,
the vitreous silica lattice frequency spectrum is visual-
ized as the Debye spectrum [V (w) « »?] with additional
Einstein contributions at several low frequencies. For
silica, Flubacher et al. find that the specific heat can
be described by including three additional Einstein
vibrational modes corresponding to temperatures
(hw/kT=1) of 13, 32, and 58°K. Similar excess—
specific-heat behavior is observed in vitreous germania
by Antoniou and Morrison,? in glycerol glass by Craig,
Massena, and Mallya,?® and in polystyrene, polymethyl
methacrylate, and polyvinyl acetate by Choy, Hunt,
and Salinger.* The excess specific heat is in all cases
attributed to excess low-frequency modes.
Numerical calculations by Dean® have shown that
the vibrational spectra of disordered solids are not
smooth, but instead are very irregular. Recently, Rosen-

* Based on thesis submitted by W. W. Scott to the University
of Pennsylvania in partial fulfillment of requirements for the Ph.D.
1 P. Flubacher, A. J. Leadbetter, J. A. Morrison, and B. P.
Stoicheff, J. Phys. Chem. Solids 12, 53 (1959).
(12925.)1\. Antoniou and J. A. Morrison, J. Appl. Phys. 36, 1873
3 R. S. Craig, C. W. Massena, and R. M. Mallya, J. Appl. Phys.
36, 108 (1965).
4 P. Choy, R. Hunt, and G. L. Salinger (private communication).
5 B. Dean, Proc. Roy. Soc. A254, 507 (1960).

stock and McGill,® extrapolating from a theoretical
analysis of a one-dimensional model, predict that peaks
are to be expected, in general, in the frequency spectrum
of disordered solids. The simplified models used above
to explain the excess specific heat have, thus, consider-
able theoretical justification.

In the same temperature region, and extending to
somewhat higher temperatures, the amorphous oxides
exhibit characteristic broad mechanical-loss peaks
which have been extensively investigated. Fine
et al.® suggested the possibility that the characteristic
mechanical loss maximum in silica occurred because of
unusual vibrational modes; i.e., that the origin of
anomalies in the mechanical loss and the excess specific
heat (subsequently measured) were structurally con-
nected. Other investigators have also suggested that
some structural entity is responsible for the excess
specific heat and the mechanical-loss maximum without,
however, considering any specific mechanism. A recent
discussion of anomalous properties of amorphous oxides
by Krause and Kurkjian,®® for example, points out that
very low-frequency Raman spectra (indicating the
presence of low-frequency vibrational modes) occur
whenever a characteristic mechanical-loss maximum is
observed for these oxides.

Precision mechanical-loss measurements of amor-
phous silica and several Na,0-SiO, glasses are presented
in this paper. The accuracy of the measurements is
such that new details of the low-temperature mechani-

(1;6%5 B. Rosenstock and R. E. McGill, Phys. Rev. 176, 1004

7 J.W. Marx and J. M. Silverstone, J. Appl. Phys. 24, 81 (1953).

8 H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

? M. E. Fine, H. Van Duyne, and N. T. Kenney, J. Appl. Phys.
25, 402 (1954).

10Q. L. Anderson and H. E. Bommel, J. Amer. Ceram. Soc. 38,
125 (1955).

1 J, T. Krause, J. Am. Ceram. Soc. 47, 103 (1964).

2 H. E. Bommel and K. Dransfeld, Phys. Rev. 117, 1245 (1960).
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cal-loss curve are revealed, thereby allowing a clearer
correlation between the specific heat and the mechani-
cal-loss behavior. In addition, precision dielectric mea-
surements in the same frequency range indicate a
correlation of dielectric behavior with mechanical-loss
behavior. A theoretical analysis is given which shows
that a charged harmonic oscillator (a representative
model of a low-frequency mode) mechanically coupled
to the “lattice” through a Griineisen constant v can
interact with an electric or a strain field and give
dielectric and mechanical loss.

Therefore, it is possible to explain the excess specific
heat and certain features of the dielectric and me-
chanical behavior in SiO,; and Na,0-SiO, glasses by
assuming the presence of several discrete modes in
addition to the normal modes of the elastic continuum.
(The elastic-continuum approximation at these low
temperatures is considered valid.!) The model, which
explicitly assumes the same structural unit responsible
for some features of specific heat, mechanical loss, and
dielectric loss, requires that the relaxation time 7, de-
scribing interactions between the harmonic oscillator
and the continuum modes, be greater than 1/w,, where
wy is the angular frequency of the harmonic oscillator.

EXPERIMENTAL RESULTS

The SiO, samples used in these experiments were of
Corning high-purity fused silica. All glasses were pre-
pared from laboratory-grade Na,CO; and SiO, powders
which were premixed and melted in an Al,O3 container
under an argon atmosphere. 0.5%, AsyO; was added to
all the melts to assist in bubble elimination. The glasses
were melted by means of an induction coil and a
graphite susceptor to 100°C above the reported liquidus
line, held for 13 h, and then poured on a graphite block
which was quickly placed in a muffle furnace at 400-
450°C and furnace cooled.

Mechanical-loss measurements were made using a
new and very sensitive vibrating-reed method de-
scribed elsewhere.!* Essentially, the sample is cut into
a three-pronged tuning-fork configuration with the two
side prongs clamped. The center prong is, thus, free
to vibrate at the resonant frequency, which can be
measured with an accuracy of one part in 10%. The rate
of decay is recorded and, thence, the mechanical loss.
Losses down to 2)X10=% have been reproducibly mea-
sured at 4.2°K. Dielectric measurements were made
using a General Radio 1615-A ratio-arm capacitance
bridge. Gold-paste electrodes with guard rings were
utilized, and the samples were usually 0.2-0.3 mm thick
with a surface area of about 1 cm?.

The general features of the mechanical behavior of
silica and Na.O-SiO, glasses up to 400°K is shown in
Figs. 1(a) and 1(b): Figure 1(a) shows the relative
temperature dependence of the real part of the elastic

4W. W. Scott and R. K. MacCrone, Rev. Sci. Instr. 39, 821
(1968). '
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constant Ca,5/Cr=(fr/ f1,2)?, where Cr and fr are the
real part of the elastic shear constant and the resonant
frequency, respectively, at a given absolute temperature
T. Figure 1(b) shows the temperature dependence of
the loss tand (tand=C"/C, where C and C’ are the real
and imaginary parts of the elastic constant). The
general features of the dielectric behavior over a wide
temperature range are shown in Figs. 2(a) and 2(b),
where the relative temperature dependence of the real
part of the dielectric constant Kr/K4,5 and temperature
dependence of the loss tand=K’/K is shown. For fused
silica, the drop in mechanical modulus, with minimum
value at about 60°K,, is well known, and the other simul-
taneous anomalous properties have been discussed.!®

The mechanical and dielectric behavior of concern
occurs at low temperatures, and are shown in Figs. 3
and 4. (The behavior of these glasses in the higher-
temperature region has been extensively investigated
but will not be discussed in this paper.) “Double knees”
may be seen in the continuously decreasing (real part
of the) elastic constant, indicating the presence of a
relaxation process centered by visual inspection at
temperatures ~11°K. Two double knees may be seen
in the continuously increasing (real part of the) dielec-
tric constant, which indicate the presence of two relaxa-
tion processes, one centered by visual inspection at
temperatures ~15°K and the other at temperatures
~37°K. Theimaginary parts of the mechanical modulus
and dielectric constant clearly show structure, as
shown in Figs. 3(b) and 4(b), but they do not give so
precise an estimate of the temperatures at which the
relaxation process occurs.

It has been found that the dispersions shown in
Figs. 3 and 4 are characteristic of the SiO, network and
not the network modifiers. As can be seen in Figs. 3
and 4, increasing Na,O content in the Na,O-SiO, glasses
did not eliminate or significantly alter the mechanical
or dielectrical relaxation under discussion. In addition,
experiments on complex glasses (Corning 7070 and 7050
glasses containing B,0s, Al,Os, LiO, and K,0) also
showed these relaxations to be present. This insensi-
tivity to chemical variations implies that these relaxa-
tions should be independent of the degree of phase
separation, and this was confirmed experimentally.
It was also found that these relaxations were inde-
pendent of the fictive temperature. The present results,
therefore, indicate that the discrete relaxation processes
are characteristic of the SiO, network, and the charac-
teristics of this network establish the temperatures at
which the relaxation processes are manifest.

From Figs. 2-4, the mechanical and dielectric be-
havior of fused-silica and silica-base glasses may be
described in terms of a broad continuous background
together with at least two relaxation processes at ~11
and ~30°K at audio frequencies. (Recently, Jones

150, L. Anderson and G. T. Dienes, in Non-Crystalline Solids,

edited by V. D. Frechette (John Wiley & Sons, Inc., New York,
1960).
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FiG. 1. (a) Relative variation of elastic moduli with temperature for fused-silica and sodium-silicate glasses.
(b) Mechanical tané of fused-silica and sodium-silicate glasses up to 400°K.

et al.'® have shown a third ultrasonic absorption process
at temperatures ~4°K, and a dielectric relaxation was
observed in the same region by Jaeger,!” cf. Krause.!)
The continuous background depends upon the cation
content and is not of concern here. The low-temperature
discrete relaxation processes, however, seem to be
characteristic of the SiO; network. In the following

18 C. K) Jones, P. G. Klemens, and J. A. Rayne, Phys. Letters 8,
31 (1964).
17 R. E. Jaeger, J. Am. Ceram. Soc. 51, 57 (1968).

sections, a model is proposed that accounts for these
low-temperature relaxations as well as the observed
excess specific heat. The model presupposes the exis-
tence of additional modes and assumes that each excess
mode frequency is related to the strain through a
Griineisen constant 4. Upon the adiabatic application
of a stress, the frequency of the excess mode is altered
so that the mode is no longer in thermal equilibrium
with the continuum phonons. The transfer of energy
into or out of the mode as equilibrium is established is
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Fi6. 2. (a) Relative variation of the dielectric constant with temperature for two sodium-silicate glasses.
(b) Dielectric tand of two sodium-silicate glasses up to 400°K.

an entropy-generating process, and gives rise to a
mechanicalloss for sinusoidally applied stress. Akhieser!®
has considered the case of mechanical loss due to heat
flow between the different phonon branches; the model
here is much simpler.

It is further assumed that the vibrational mode in-
volves charge motion. Thus, an adiabatically applied
electric field would then perturb the harmonic-oscillator

18 A. Akhieser, J. Phys. USSR 1, 277 (1939).

energy levels and again thermal nonequilibrium would
occur, with entropy generation as equilibrium is esta-
blished. Thus, the model predicts that a sinusoidally
applied electric field will also result in a dielectric loss.

Model

Let us suppose that there exists in the amorphous
material a particular local structure with a character-
istic vibration frequency wy, cf. Ref. 6. A simple model,
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Fi6. 3. (a) Low-temperature change in the elastic modulus of silica and sodium-silicate glasses indicating a relaxation process at
10-12°K. The dashed lines are extrapolations of the behavior at temperatures above and below the temperature of the relaxation.
(b) Low-temperature mechanical-loss data for silica and a sodium-silicate glass. The best fit to the experimental points has been drawn

displaced from the actual position for clarity.

similar to that discussed by Rosenstock,? is sketched
in Fig. 5, where for simplification we consider displace-
ment in one dimension only.

Qualitatively, it can be concluded that the effect of
this attached harmonic oscillator of mass 7 and spring
constant #, on the normal modes of vibration of the
linear chain with units of mass M and spring constant U,
decrease as the ratios m/M — 0 and #/U — 0. A crude
but plausible assumption is that the chain and harmonic-
oscillator interactions are perturbation interactions
only. This implies that the local structure vibrates as
an almost independent Einstein oscillator. Krumhans]®
has pointed out that many localized modes behave as
if they were simple Einstein oscillators and discusses
theoretically how this occurs.

On this assumption, we shall consider the interaction
of the additional harmonic oscillator of frequency wy
with an applied mechanical stress o and an applied
electric field F. The effect of an adiabatically applied
stress or electric field is to produce a nonequilibrium
energy state of the oscillator. This results in a difference

19 H. B. Rosenstock, J. Phys. Chem. Solids 23, 659 (1962).
2 J. A. Krumhansl, in Localized Excitations in Solids, edited
by R. F. Wallis (Plenum Publishing Corp., New York, 1968), p. 17.

between the unrelaxed and relaxed elastic constants C,,
and C,, and dielectric constants K, and K, The
approach to equilibrium, the relaxation, is a very com-
plex process, and we will discuss qualitatively the
possibility of a “relaxation-time” behavior, where
follows one of the expressions

(708/T)eR!*T

T7=70e?*T or

Anelastic Relaxation

The particular thermoelastic behavior of interest
here may be most simply described by assuming a
Griineisen constant v4 [w=w(1+7vqe)] and thermal
coefficient of expansion ag per unit concentration of
defect. Here, w is the frequency of vibration of the struc-
tural unit when the specimen is in a state of strain e.
Thus, following Zener,?* we write

e=Coo+NaaT’ 1)

for the strain relative to the standard state, with the
stress ¢=0, 7'=T¢—T=0. Here, C, is the relaxed

2 C. M. Zener, Elasticity and Anelasticity of Metals (Chicago
University Press, Illinois, 1965), p. 69ff.
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Fic. 4.%(a) Low-temperature change in the dielectric constant for two sodium-silicate glasses indicating two, relaxation processes at
~12 and ~35°K. The dashed lines are extrapolations of the behavior at temperatures above and below the temperature of the
relaxation. (b) Low-temperature dielectric-loss data for two sodium-silicate glasses showing two relaxation processes. The best fit to
the experimental results has been drawn displaced from the actual position for clarity. The dashed line on the 129, Na,O curve indicates

the presumed background.

“isothermal” elastic constant and Nag the coefficient
of thermal expansion due to the defects. This equation
implies that we are considering a simple model of &V
defects embedded in an isothermal reservoir with elastic
constant Cy and zero coefficient of thermal expansion;
this arbitrarily sets the background thermoelastic loss
of the reservoir (specimen) to be zero. Terms describing
a background thermoelastic loss could have been in-
cluded in the above equations; for simplicity, they have
been omitted.

A temperature difference between the Einstein oscil-
lator and the reservoir may be included by an adiabatic
strain, i.e.,

6T’/6t= (aT//ae)adiabatich/dt= —ﬁdé/dt. (2)

On the usual assumption that thermal relaxation follows

displacement

a relaxation-time equation, i.e., that

aT"/dt=—T"/r, )
the well-known relaxation expression?!
e/Cot7eCo=0+76 4)
is obtained, where
Co=Co/(1+NaaB) ©)

is the unrelaxed elastic constant. Now,

B=—(0T/de)=(0T/dU)(0U/dw)r(dw/ de)
=wgya(0U/dw)r/C,
=hweye/2k(e2—2z—e2) /252,  (6)

where U is the energy of the mode, C. is the specific

Ui, Mi

F1cG. 5. Structural model.
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heat at constant ¢, the last expression applies specifically
to an Einstein oscillator with s=#%w,/kT, and we have
set Ce=C,.

Thus, (Cy—C,)/Cs, the fractional change in the
elastic constant observed an infinite time after the
application of a stress, is given by

(Co—Cy)/Co=NaiB= (Nagyahwy/2k)M'(z), (7)

where M’ (3) = (e?—2z—e%)/22% The function M’ (3) is
shown plotted as a function of z71=%T/#w, in Fig. 6.

This expression is probably quite good at higher tem-
peratures as z—> 0. At lower temperatures, however,
as z— o the above expression diverges because we
have not taken into account the temperature depend-
ence of the coefficient of thermal expansion Nag. Now,
Nag(T)— 02 at low temperatures, so that NagM’(z)
will remain finite as 7' — 0. Two possibilities are shown
(dotted line in Fig. 6). Thus, according to this analysis,
the application of a stress will cause a change in the
elastic constant, the magnitude of which decreases with
increasing temperature.

Dielectric Relaxation

A harmonic oscillator with charge e in an applied
electric field experiences the perturbation H'=eFr.
The only nonvanishing matrix elements H',,, are®

22 We assume that the Nernst Heat Theorem is valid.in this
connection, although there is doubt that the configuration
entropy — 0 as 7" — 0.

B 1. Pauling and E. B. Wilson, I'niroduction to Quantum Me-
chanics (McGraw-Hill Book Co., New York, 1935), Chap. III.

H' 1,,=n"?uF and H', np1= (n+1)V2uF, where
wi=he?/2muy.

Thus, a second-order perturbation to the unperturbed
energy E,°= (n+3)hw, results and this gives rise to a
change in the Gibbs free energy. The free-energy change
may be calculated by the method of “thermodynamic
perturbation’?

| Vim|

1 1
- T Z Vnn2Wn+ —'(Z Vnan)2,
2KT "

28T
where
W.=exp[(Go—E.%)/kT]. 8)
In this case,
Nu?F?
AG= . 9)
- hwo
Since
AX=—%0°AG/dF?,
we find
Nu?
AX= (10)
- hwo

This shows that a charged harmonic oscillator has a
temperature-independent dielectric response.

Relaxation Time

To evaluate 7, it is necessary to know not only the
normal modes of the system but also the details of the

# L. D. Landau and E. M. Lifshitz, Statistical Physics (Perga-
mon Press, Ltd., London, 1958), Chap. 32, p. 93ff. )
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interactions between the “oscillator-type” modes and
“chain-type’” modes. We shall avoid the mathematical
complexities and uncertainties by confining our atten-
tion to the harmonic oscillator, whose first perturbation
term is H'=C/3!(u—u;)3, and approach a description
of the qualitative behavior by assuming that we can
write # and %; in terms of the normal coordinates of an
isolated harmonic oscillator and isolated linear chain.
On this assumption,

cry b\
(D
3! ZWOO

1 1/2 h 1/2 3
!
N E \2Mwy

where a, a; and a*, a;* are the annihilation and
creation operators?® for the oscillator and mode %,
respectively.

Expansion of H’ gives interaction terms involving all
combinations of the annihilation and creation operators,
but which nevertheless include two types:

Hy «aa*a_i*e=i
and
H,) «aara_p*ei®—r)zi,

The first describes interactions in which two oscillator
modes interact with one chain mode, while the second
describes interactions in which one oscillator mode
interacts with two chain modes. The conservation of
energy restricts the frequency wy in the first case to wy,
while in the second case, the restriction is much less
severe, namely, w;—wj =wq. This means that phonons
wi, wpDw, are also effective in the interaction. Since
only a relatively few phonons satisfy the first criterion
while relatively many satisfy the second, we assume
that the rate of reaction is dominated by the second
interaction, namely, two-chain-one-oscillator phonon
interactions, the possibility of interaction being propor-
tional to the number of phonons of each involved.
Thus,

7l Nosc kM k*

o« (ehwolkT__ 1)—1(ehwlc/kT__ 1)—l(ehwlc/kT__ 1)—1

average over all phonon occupation numbers. Thus, we
suggest

Lo (Tril/0)e 28T for huw/kT<K1  (11)

(12)

To obtain these equations, we have assumed that
phonons with frequency wg, wi>%T /% are mainly re-
sponsible for establishing equilibrium, and that the
average over all wy’s may be approximated by an
average frequency 2.

and
T/ RT>>1.

Lo pglg2haIRT  for

%5 J, M. Ziman, Electrons and Phonons (Oxford University
Press, New York, 1963), Chap. 1.
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Comparison with Experiment

The previous sections have shown that a number of
Einstein oscillators (or excess vibrational modes within
a narrow frequency range) can give rise to both me-
chanical and dielectric relaxations. For a sinusoidally
applied stress, the complex elastic constant C (w)~+:C (w)
is, thus, given by the usual Debye equations

[Cw)=Cx]/(Co—Cu) =1/ (1+w?r?)

[C'(@) 1/ (Co—Co) =wr/(1+wir?).

(Cy—C,)/Cy is given by Egs. (6) and (7), r given by
Eq. (11) or (12). Analogous expressions exist for the
complex dielectric constant K (w)+4K’(w), the magni-
tude of (Ko—K.)/K, being given by Eq. (10). Since
(Co—Cy)/Cuy (Ko—K,)/K.<1, we have for tans, for
example,

and

Co—C» wr
Co 14?2 ’

tand=~

where § is the loss angle.

We suggest that the mechanical relaxations of Fig. 3,
at temperatures of ~11 and ~35°K correspond to
particularly prominent “spikes” in the phonon density-
of-states distribution curve. Indeed, the frequency
spread may in some cases be so narrow that “Einstein
modes” may be an appropriate description. The fact
that each of these spikes gives rise to a dielectric relaxa-
tion, Fig. 4, indicates that charge motion is also
involved.

The anelastic and dielectric measurements indicate
the presence of a process at ~11°K equally well. In
contrast, the dielectric measurements of the 35° process
show a relatively sharp peak (see also measurements by
Volger and Stevels?®) while the anelastic measurements
indicate a broad spectrum of relaxation between 30
and 50°K. This suggests the possibility that several
fairly closely spaced vibrational modes are involved
here, with only one, however, involving charge motion.
Each of the modes gives rise to a mechanical relaxation,
and, hence, a broad mechanical spectrum arises, while
only one of the modes is dielectrically active, and
sharper dielectric relaxation is observed.

It is interesting to estimate the value of the dielectric
relaxation

(Xo—Xu) =Np*/hwo=Ne*/2mwg

where IV is the number of vibrational units. Using the
values of IV and wy determined by Leadbetter ef al.! from
specific-heat measurements, we find the values of
Xo—X, shown in Table I with the values of # used in
this estimate. Also shown in Table I are the corre-
sponding experimentally observed values of Xg—X,.
Good agreement between theory and experiment is
evident.

% J. Volger, J. M. Stevels, and C. van Amerongon, Philips
Res. Rept. 10, 260 (1955).
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TaBLE 1. Theoretical and experimental dielectric relaxation
strengths in fused SiO; (see text).

Oscillator®

m X0~ X X0 X

(°K) Na (a.m.u.) (theor) (expt)
13 4.8 X108 16 3.3X1073 1.27X1073
32 1.2X10% 92 2.4X1073 2.0 X103

58 8.4X10® Not observed

s Reference 1.

Since the vibrating structural units are not known,
the values of m to be used can only be guessed at. The
values used here were arbitrarily chosen to correspond
to the mass of an oxygen? atom and the mass of an
SiOy4 tetrahedron. It would not be realistic, however, to
consider masses smaller or larger by an order of mag-
nitude. Thus, since the respective masses 7 can only
realistically lie between close limits and cannot be
arbitrarily varied, we conclude that the agreement
between theory and experiment is most significant. It
is unfortunate that a relaxation was not observed in
these experiments at about 55°K, thus not giving
complete correspondence with Leadbetter ef al.!

The magnitude of the anelastic relaxation is not so
readily evaluated. However, approximating Na by the
difference between the coefficients of thermal expansion
of fused silica and quartz at 10°K!%, =~1X10-%, and
using the value —4 for the Griineisen constant, we find

(C'O_-'C’OO/C":@)(:&IBz 2-9>< 1078,

This value should be compared with the experimentally
observed value

(C'O_‘C'bo/c'oc)expfsz ZOX 103,

Agreement is most satisfactory, in view of the relatively
crude estimate.

The relaxation time 7 is related to the resonant
scattering of phonons discussed by Wagner?® and which
is manifest in thermal-conductivity measurements.29-3!
Using the empirically determined value of 7 of Walker,
namely,

1/7210%wy!,

we find 7=3.5X1075 sec for sw,/k~ 10°K. Although the
form of this expression is not the same as the Arrhenius
expression which describes our results (see below), we
nevertheless feel that the estimate indicates that our
relaxation time 10—3~10—% sec is at least realistic.

The temperature at which the maximum in the
mechanical loss and dielectric loss occurs is found from
the condition dtand/d7=0. [At this temperature, the
relaxation of the real part of the modulus is about
one-half (see Ref. 20).] Differentiating the complete

% A, E. Clark and R. E. Strakna, Phys. Chem. Glasses 3, 121
(lg?§%:\Vagneg Phys. Rev. 131, 1443 (1963).

29 C. T. Walker and R. O. Pohl, Phys. Rev. 131, 1433 (1963).

% C. T. Walker, Phys. Rev. 132, 1963 (1963).

31D. A. Nelson, J. Broerman, E. C. Paxhia, and C. R.
Whitsett, Phys. Rev. Letters 22, 834 (1969).
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F16. 7. Experimental Inwy, versus 1/7 for the low-temperature re-
laxation indicating an activation energy of 0.0140+0.0008 eV.

expressions for tand leads to conditions with intractable
solutions, so we resort to the simple Debye criterion
wn,7=1 and use the “peak shift” method (in which the
temperature at which the maximum occurs increases
with increasing frequency of measurement w,) to de-
termine the “activation energy” 2h@=(Q. This pro-
cedure implies the assumption that the temperature
dependence of Co—C,, is slow compared to the tempera-
ture dependence of the Debye term wr/1+4w?r2

The Arrhenius plot for the 11°K dispersion is shown
in Fig. 7. A least-squares fit to the expression
=10 exp(Q/kT) leads to the values 7=2.5X10" sec,
(©=0.0140+0.0008 eV. This activation energy indicates
that the frequencies of the phonons interacting with
the oscillator are w~1.1X10"® sec™’. It is interesting
that this process was predicted by Clark and Strakna??
from a mathematical analysis of the data of Anderson
and Bommel, although it was not observed experi-
mentally as a discrete process. Figure 8 shows the
Arrhenius plot for the 30°K dispersion. A least-squares
fit of these experimental values leads to r=8.7 X104
sec, 0=0.053=+0.007 eV, indicating that the frequencies
of the phonons interacting with the oscillator are
w~4.2X10'8 sec™. The data for both relaxation proc-
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laxation indicating an activation energy of 0.05340.007 eV.

esses were also fitted to the equation 7= (70/T)e@/*T,
but the standard deviation was greater in both cases.
The activation energies for the low- and high-tempera-
ture processes, respectively, were 0.01474-0.0019 and
0.056240.0117 eV. This indicates that the second case
is probably valid at these temperatures and measuring
frequencies, i.e., iwg>kT.

CONCLUSION

There are several consistencies in the above analysis
that are important: (i) The calculated values of the
electric susceptibility based on specific-heat measure-

SCOTT AND R. K. MacCRONE 1

ments and reasonable assumptions agrees well with the
measured values, (ii) the calculated values of the
anelastic relaxations agree reasonably well with the
experimental values, (iii) the phonon-relaxation times
measured here are in the same range as those deduced
from thermal-conductivity measurements, and (iv) the
assumption #w;>kT appears valid, in that the experi-
mentally determined values of w,=~1-5X10% sec™,
which correspond to temperatures =~100°K. It, thus,
appears possible to account for a number of the ano-
malous properties of vitreous silica based solely on the
assumption that excess vibrational modes exist in the
material in accord with theoretical normal mode calcu-
lations. In this way, a consistant account of the excess
low-temperature specific heat and some prominent
features of the anelastic and dielectric behavior at low
temperatures can be given.

However, it should be pointed out that just as the
excess specific heat may be explained by assuming more
than just three Einstein modes, by assuming a distribu-
tion of Einstein modes, or even by using suitably
chosen Schottky specific-heat terms, so also may the
anelastic and dielectric relaxations be explained in
other ways. Specifically, for example, the relaxations
may be due to the field induced inequivalence of an
otherwise equivalent two-position defect, the conven-
tional model used in crystalline solids. The merit of the
idea developed here lies in the assumption that the
simplest theory is also the most acceptable. It is worth
noting that similar anelastic relaxations have also been
recently observed in polymethyl-methacrylate and poly-
vinyl acetate,? materials which also exhibit excess
specific heat.
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